enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulsar - Wikipedia

    en.wikipedia.org/wiki/Pulsar

    Though the general picture of pulsars as rapidly rotating neutron stars is widely accepted, Werner Becker of the Max Planck Institute for Extraterrestrial Physics said in 2006, "The theory of how pulsars emit their radiation is still in its infancy, even after nearly forty years of work."

  3. Rotating radio transient - Wikipedia

    en.wikipedia.org/wiki/Rotating_radio_transient

    Rotating radio transients (RRATs) are sources of short, moderately bright, radio pulses, which were first discovered in 2006. [1] RRATs are thought to be pulsars, i.e. rotating magnetised neutron stars which emit more sporadically and/or with higher pulse-to-pulse variability than the bulk of the known pulsars.

  4. Hulse–Taylor pulsar - Wikipedia

    en.wikipedia.org/wiki/Hulse–Taylor_pulsar

    Using the Arecibo 305 m dish, Hulse and Taylor detected pulsed radio emissions and thus identified the source as a pulsar, a rapidly rotating, highly magnetized neutron star. The neutron star rotates on its axis 17 times per second; thus the pulse period is 59 milliseconds .

  5. PSR B1937+21 - Wikipedia

    en.wikipedia.org/wiki/PSR_B1937+21

    PSR B1937+21 is a pulsar located in the constellation Vulpecula a few degrees in the sky away from the first discovered pulsar, PSR B1919+21. [1] The name PSR B1937+21 is derived from the word "pulsar" and the declination and right ascension at which it is located, with the "B" indicating that the coordinates are for the 1950.0 epoch.

  6. Millisecond pulsar - Wikipedia

    en.wikipedia.org/wiki/Millisecond_pulsar

    Millisecond pulsars have been detected in radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The leading hypothesis for the origin of millisecond pulsars is that they are old, rapidly rotating neutron stars that have been spun up or "recycled" through accretion of matter from a companion star in a close binary system.

  7. Pulsar planet - Wikipedia

    en.wikipedia.org/wiki/Pulsar_planet

    One potential way to image a planet is to detect its transit in front of the star: in case of pulsar planets, the probability of a planet transiting in front of pulsar is very low because of the small size of pulsars. Spectroscopic analyses of planets are rendered difficult by the complicated spectra of pulsars. Interactions between a planetary ...

  8. PSR J0952–0607 - Wikipedia

    en.wikipedia.org/wiki/PSR_J0952–0607

    PSR J0952–0607 is a massive millisecond pulsar in a binary system, located between 3,200–5,700 light-years (970–1,740 pc) from Earth in the constellation Sextans. [6] It holds the record for being the most massive neutron star known as of 2022, with a mass 2.35 ± 0.17 times that of the Sun—potentially close to the Tolman–Oppenheimer–Volkoff mass upper limit for neutron stars.

  9. PSR B1257+12 - Wikipedia

    en.wikipedia.org/wiki/PSR_B1257+12

    PSR B1257+12, previously designated PSR 1257+12, alternatively designated PSR J1300+1240, [6] is a millisecond pulsar, 2,300 light-years (710 parsecs) from the Sun, in the constellation Virgo, rotating at about 161 times per second (faster than the blade of a blender). [1]