Search results
Results from the WOW.Com Content Network
The lever and its properties were already well known before the time of Archimedes, and he was not the first to provide an analysis of the principle involved. [5] The earlier Mechanical Problems, once attributed to Aristotle but most likely written by one of his successors, contains a loose proof of the law of the lever without employing the concept of centre of gravity.
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
Archimedes did not admit the method of indivisibles as part of rigorous mathematics, and therefore did not publish his method in the formal treatises that contain the results. In these treatises, he proves the same theorems by exhaustion, finding rigorous upper and lower bounds which both converge to the answer required. Nevertheless, the ...
Archimedes' investigation of paraboloids was possibly an idealization of the shapes of ships' hulls. Some of the paraboloids float with the base under water and the summit above water, similar to the way that icebergs float. Of Archimedes' works that survive, the second book of On Floating Bodies is considered his most mature work. [6]
The Archimedes Palimpsest is a parchment codex palimpsest, originally a Byzantine Greek copy of a compilation of Archimedes and other authors. It contains two works of Archimedes that were thought to have been lost (the Ostomachion and the Method of Mechanical Theorems ) and the only surviving original Greek edition of his work On Floating ...
The Archimedes number is applied often in the engineering of packed beds, which are very common in the chemical processing industry. [3] A packed bed reactor, which is similar to the ideal plug flow reactor model, involves packing a tubular reactor with a solid catalyst, then passing incompressible or compressible fluids through the solid bed. [3]
A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.