Search results
Results from the WOW.Com Content Network
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Pages in category "Mathematics of music" The following 14 pages are in this category, out of 14 total. This list may not reflect recent changes. ...
In mathematics, a topos (US: / ˈ t ɒ p ɒ s /, UK: / ˈ t oʊ p oʊ s, ˈ t oʊ p ɒ s /; plural topoi / ˈ t ɒ p ɔɪ / or / ˈ t oʊ p ɔɪ /, or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site).
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a Riemannian or pseudo-Riemannian manifold induced by its metric tensor.
In mathematics, and more particularly in set theory, a cover (or covering) of a set is a family of subsets of whose union is all of .More formally, if = {:} is an indexed family of subsets (indexed by the set ), then is a cover of if .
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior . Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from ...
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...