Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
is the gradient, i.e., rate of change with position, of the logarithm of the salt concentration, which is equivalent to the rate of change of the salt concentration, divided by the salt concentration – it is effectively one over the distance over which the concentration decreases by a factor of e. The above equation is approximate, and ...
The grey represents the concentration of a molecule. A biomolecular gradient is established by a difference in the concentration of molecules in a biological system such as individual cells, groups of cells, or an entire organism. A biomolecular gradient can exist intracellularly (within a cell) or extracellularly (between groups of cells).
This process is in contrast to passive transport, which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area of low concentration, without energy. Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nerve impulse transmission.
There is a concentration gradient in the balloon wall, because the balloon was initially filled with helium, and thus there is plenty of helium on the inside, but there is relatively little helium on the outside (helium is not a major component of air). The rate of transport is governed by the diffusivity and the concentration gradient.
Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion, originating from the random motion of the molecules. The result of diffusion is a gradual mixing of material such that the ...
According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent xylem. This creates turgor pressure, also called hydrostatic pressure, in the phloem. The hypothesis states ...
where is the diffusion coefficient and can be obtained by the Stokes-Einstein equation, and the second term is the gradient of the chemical potential with respect to position. Note that [B] refers to the average concentration of B in the solution, while [B](r) is the "local concentration" of B at position r.