Search results
Results from the WOW.Com Content Network
Ethylene (ethene), a small organic molecule containing a pi bond, shown in green.. In chemistry, pi bonds (π bonds) are covalent chemical bonds, in each of which two lobes of an orbital on one atom overlap with two lobes of an orbital on another atom, and in which this overlap occurs laterally.
The bonding between alkenes and transition metals is described by the Dewar–Chatt–Duncanson model, which involves donation of electrons in the pi-orbital on the alkene to empty orbitals on the metal. This interaction is reinforced by back bonding that entails sharing of electrons in other metal orbitals into the empty pi-antibonding level ...
Since the exo-product has primary (bonding) orbital interactions, it can still form; but since the endo-product forms faster, it is the major product. [2] *Note: The HOMO of ethene and the LUMO of butadiene are both symmetric, meaning the reaction between these species is allowed as well. This is referred to as the "inverse electron demand ...
On the left, a filled pi-orbital on C 2 H 4 overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on C 2 H 4 overlaps with a filled d-orbital on the metal The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes .
The possible orbital symmetries are listed in the table below. For example, an orbital of B 1 symmetry (called a b 1 orbital with a small b since it is a one-electron function) is multiplied by -1 under the symmetry operations C 2 (rotation about the 2-fold rotation axis) and σ v '(yz) (reflection in the molecular
The Diels-Alder reaction of hexadeca-1,3,5,7,9,11,13,15-octaene and ethylene can be thought of as a [4+2] reaction between a substituted diene and a dienophile. The frontier molecular orbitals produced by a typical structural optimization are as follows: the HOMO and LUMO of the dienophile "ethylene" are two-centered, while the HOMO and the LUMO of the substituted diene "hexadeca-1,3,5,7,9,11 ...
The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp 3-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur (e.g. sp 2 to sp 2). In fact, the carbon atoms in the single bond need not be of the ...
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2.It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. [7] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).