Ad
related to: biofilm formation pdf
Search results
Results from the WOW.Com Content Network
EPS is found in the matrix of other microbial biofilms such as microalgal biofilms. The formation of biofilm and structure of EPS share a lot of similarities with bacterial ones. The formation of biofilm starts with reversible absorption of floating cells to the surface. Followed by production of EPS, the adsorption will get irreversible.
A biofilm is a syntrophic community of microorganisms in which cells stick to each other and often also to a surface. [2] [3] These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPSs).
Biofilm formation begins with the initial attachment of microorganisms to a substrate, such as rocks, shells, or sand in the intertidal zone. This process occurs during the reversible attachment phase, in which the microorganisms only lightly adhere to the substrate. [5]
The formation of biofilms is a complex process and is dependent upon the availability of light as well as the relationships between the microorganisms. Biofilms serve a variety of roles in aquatic, terrestrial, and extreme environments; these roles include functions which are both beneficial and detrimental to the environment.
The rhI system regulates the rhII gene which encodes for C 4-HSL synthase which plays a significant role in biofilm formation. [6] Only select bacterium can utilize Quorum sensing in their biofilm production; among the predominant users is P. aeruginosa and the genus Burkholderia to form biofilms. Biofilms are important in all aspects of life ...
Biofilms can consist of a multitude of bacteria, fungi, and algae which are able to absorb, immobilize, and degrade many common pollutants found in wastewater.By harnessing a natural phenomenon, biofilm-mediated remediation is an environmentally friendly method for environmental cleanup. [3]
Biofouling is divided into microfouling—biofilm formation and bacterial adhesion—and macrofouling—attachment of larger organisms. Due to the distinct chemistry and biology that determine what prevents them from settling, organisms are also classified as hard- or soft-fouling types.
Surface roughness can also affect biofilm adhesion. Rough, high-energy surfaces are more conducive to biofilm formation and maturation, while smooth surfaces are less susceptible to biofilm adhesion. The roughness of a surface can affect the hydrophobicity or hydrophilicity of the contacting substance, which in turn affects its ability to adhere.
Ad
related to: biofilm formation pdf