Search results
Results from the WOW.Com Content Network
A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.
Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):
Hamilton's tensor is actually the absolute value on the quaternion algebra, which makes it a normed vector space. Hamilton defined tensor as a positive numerical quantity, or, more properly, signless number. [12] [13] [14] A tensor can be thought of as a positive scalar. [15] The "tensor" can be thought of as representing a "stretching factor ...
Ampèremetre (Ammeter) A physical quantity (or simply quantity) [1] [a] is a property of a material or system that can be quantified by measurement.A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement.
Get ready for all of today's NYT 'Connections’ hints and answers for #577 on Wednesday, January 8, 2025. Today's NYT Connections puzzle for Wednesday, January 8, 2025 The New York Times
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.