enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  3. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Concretely, in the case where the vector space has an inner product, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V ∗ := Hom ( V , K ) {\displaystyle V^{*}:={\text{Hom}}(V,K)} , so that α ∈ V ∗ {\displaystyle \alpha \in V^{*}} is a linear map α : V → K ...

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric. For example, an event in spacetime may be represented as a position four-vector , with coherent derived unit of meters: it includes a position Euclidean vector and a timelike component, t ⋅ c 0 (involving the speed ...

  5. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  6. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  7. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    If W is the tensor product bundle of V with L, then W is a bundle of vector spaces of just the same dimension as V. This allows one to define the concept of tensor density, a 'twisted' type of tensor field. A tensor density is the special case where L is the bundle of densities on a manifold, namely the determinant bundle of the cotangent bundle.

  8. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    The divergence at a point represents the degree to which a small volume around the point is a source or a sink for the vector flow, a result which is made precise by the divergence theorem. The divergence can also be defined on a Riemannian manifold, that is, a manifold with a Riemannian metric that measures the length of vectors.

  9. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.