Search results
Results from the WOW.Com Content Network
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same.
The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...
atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides.
Before the existence of pocket calculators, trigonometric tables were essential for navigation, science and engineering. The calculation of mathematical tables was an important area of study, which led to the development of the first mechanical computing devices.
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions.For a complete list of integral formulas, see lists of integrals.
In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function: [1] = + + = = + +. This series converges in the complex disk | |, except for = (where =).
The inverse tangent integral is a special function, defined by: Ti 2 ( x ) = ∫ 0 x arctan t t d t {\displaystyle \operatorname {Ti} _{2}(x)=\int _{0}^{x}{\frac {\arctan t}{t}}\,dt} Equivalently, it can be defined by a power series , or in terms of the dilogarithm , a closely related special function.