enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The key quantities are then the pressure drop along the pipe per unit length, ⁠ Δp / L ⁠, and the volumetric flow rate. The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid).

  5. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.

  6. Pressure drop - Wikipedia

    en.wikipedia.org/wiki/Pressure_drop

    Pressure drop in piping is directly proportional to the length of the piping—for example, a pipe with twice the length will have twice the pressure drop, given the same flow rate. [8] Piping fittings (such as elbow and tee joints) generally lead to greater pressure drop than straight pipe. As such, a number of correlations have been developed ...

  7. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold

  8. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  9. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    For circular pipes of different surface roughness, at a Reynolds number below the critical value of approximately 2000 [2] pipe flow will ultimately be laminar, whereas above the critical value turbulent flow can persist, as shown in Moody chart. For non-circular pipes, such as rectangular ducts, the critical Reynolds number is shifted, but ...