Search results
Results from the WOW.Com Content Network
For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction. The eight's bit is followed by the four's bit, then the two's bit, then the one's bit. The fractional bits continue the pattern set by the integer bits. The next bit is the half's bit, then the quarter's bit, then the ⅛'s bit, and so on. For example:
0101 (decimal 5) OR 0011 (decimal 3) = 0111 (decimal 7) The bitwise OR may be used to set to 1 the selected bits of the register described above. For example, the fourth bit of 0010 (decimal 2) may be set by performing a bitwise OR with the pattern with only the fourth bit set: 0010 (decimal 2) OR 1000 (decimal 8) = 1010 (decimal 10)
Similarly, the most significant bit (MSb) represents the highest-order place of the binary integer. The LSb is sometimes referred to as the low-order bit or right-most bit, due to the convention in positional notation of writing less significant digits further to the right. The MSb is similarly referred to as the high-order bit or left-most bit.
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
However, a binary number system with base −2 is also possible. The rightmost bit represents (−2) 0 = +1, the next bit represents (−2) 1 = −2, the next bit (−2) 2 = +4 and so on, with alternating sign. The numbers that can be represented with four bits are shown in the comparison table below.
Given a decimal number, it can be split into two pieces of about the same size, each of which is converted to binary, whereupon the first converted piece is multiplied by 10 k and added to the second converted piece, where k is the number of decimal digits in the second, least-significant piece before conversion.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
For example, decimal 365 (10) or senary 1 405 (6) corresponds to binary 1 0110 1101 (2) (nine bits) and to ternary 111 112 (3) (six digits). However, they are still far less compact than the corresponding representations in bases such as decimal – see below for a compact way to codify ternary using nonary (base 9) and septemvigesimal (base 27).