enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3 ′. If q 2 is distinct from p 2 ′, bisect the angle at q 1 with a new mirror. With p 1 and p 2 now in place, p 3 is at p 3 ″; and if it is not in place, a final mirror through q 1 and q 2 will flip it to q 3. Thus at most three reflections suffice to reproduce any plane ...

  3. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  4. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The translations by a given distance in any direction form a conjugacy class; the translation group is the union of those for all distances. In 1D, all reflections are in the same class. In 2D, rotations by the same angle in either direction are in the same class. Glide reflections with translation by the same distance are in the same class. In 3D:

  5. Frieze group - Wikipedia

    en.wikipedia.org/wiki/Frieze_group

    The group is generated by a translation and a 180° rotation. p2mg [∞,2 +] D ∞d Dih ∞ 2*∞ spinning sidle (TRVG) Vertical reflection lines, Glide reflections, Translations and 180° Rotations: The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical ...

  6. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations.

  7. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    Through a change of coordinates (a rotation of axes and a translation of axes), equation can be put into a standard form, which is usually easier to work with. It is always possible to rotate the coordinates at a specific angle so as to eliminate the x′y′ term. Substituting equations and into equation , we obtain

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  9. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...