enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3 ′. If q 2 is distinct from p 2 ′, bisect the angle at q 1 with a new mirror. With p 1 and p 2 now in place, p 3 is at p 3 ″; and if it is not in place, a final mirror through q 1 and q 2 will flip it to q 3. Thus at most three reflections suffice to reproduce any plane ...

  4. Frieze group - Wikipedia

    en.wikipedia.org/wiki/Frieze_group

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  5. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    They are represented as a translation followed by a rotation, rather than a translation followed by some kind of reflection (in dimensions 2 and 3, these are the familiar reflections in a mirror line or plane, which may be taken to include the origin, or in 3D, a rotoreflection).

  6. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    The composition of two offset point reflections in 2-dimensions is a translation. The composition of two point reflections is a translation. [3] Specifically, point reflection at p followed by point reflection at q is translation by the vector 2(q − p). The set consisting of all point reflections and translations is Lie subgroup of the ...

  7. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a Lie group of rotations about a fixed point. This (common) fixed point or center is called the center of rotation and is usually identified with the origin. The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its ...

  9. Translation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Translation_(geometry)

    In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is ...