enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary precision arithmetic is also used to compute fundamental mathematical constants such as π to millions or more digits and to analyze the properties of the digit strings [8] or more generally to investigate the precise behaviour of functions such as the Riemann zeta function where certain questions are difficult to explore via ...

  3. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Routines for Gauss–Kronrod quadrature are provided by the QUADPACK library, the GNU Scientific Library, the NAG Numerical Libraries, R, [2] the C++ library Boost., [3] as well as the Julia package QuadGK.jl [4] (which can compute Gauss–Kronrod formulas to arbitrary precision).

  4. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]

  5. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    It is related to precision in mathematics, which describes the number of digits that are used to express a value. Some of the standardized precision formats are Half-precision floating-point format; Single-precision floating-point format; Double-precision floating-point format; Quadruple-precision floating-point format

  6. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  7. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    The form of Eq(12) is usually the goal of a sensitivity analysis, since it is general, i.e., not tied to a specific set of parameter values, as was the case for the direct-calculation method of Eq(3) or (4), and it is clear basically by inspection which parameters have the most effect should they have systematic errors.

  8. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  9. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).