enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]

  5. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    The dissipation constant is a measure of the thermal connection of the thermistor to its surroundings. It is generally given for the thermistor in still air and in well-stirred oil. Typical values for a small glass-bead thermistor are 1.5 mW/°C in still air and 6.0 mW/°C in stirred oil.

  6. Dissipation factor - Wikipedia

    en.wikipedia.org/wiki/Dissipation_factor

    In physics, the dissipation factor (DF) is a measure of loss-rate of energy of a mode of oscillation (mechanical, electrical, or electromechanical) in a dissipative system. It is the reciprocal of quality factor , which represents the "quality" or durability of oscillation.

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    This can be taken as a significant (and purely mathematical) justification of the use of the Laplacian and of the heat equation in modeling any physical phenomena which are homogeneous and isotropic, of which heat diffusion is a principal example. The diffusivity constant, α, is often not present in mathematical studies of the heat equation ...

  8. Dissipation - Wikipedia

    en.wikipedia.org/wiki/Dissipation

    In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy ( internal , bulk flow kinetic , or system potential ) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form.

  9. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    Various authors have correlated charts and graphs for different geometries and flow conditions. For flow parallel to a plane surface, where x {\displaystyle x} is the distance from the edge and L {\displaystyle L} is the height of the boundary layer, a mean Nusselt number can be calculated using the Colburn analogy .