enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and R = P ∘ Q . {\displaystyle R=P\circ Q.}

  4. Differential coefficient - Wikipedia

    en.wikipedia.org/wiki/Differential_coefficient

    A coefficient is usually a constant quantity, but the differential coefficient of f is a constant function only if f is a linear function. When f is not linear, its differential coefficient is a function, call it f ′, derived by the differentiation of f, hence, the modern term, derivative. The older usage is now rarely seen.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g, ′ = (⁡) ′ = (′ + ′ ⁡), ...

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  7. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    Let be a function in the Lebesgue space ([,]).We say that in ([,]) is a weak derivative of if ′ = ()for all infinitely differentiable functions with () = =.. Generalizing to dimensions, if and are in the space () of locally integrable functions for some open set, and if is a multi-index, we say that is the -weak derivative of if

  8. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  9. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In that way, it is a weaker result than the reciprocal rule proved above. However, in the context of differential algebra, in which there is nothing that is not differentiable and in which derivatives are not defined by limits, it is in this way that the reciprocal rule and the more general quotient rule are established.