Search results
Results from the WOW.Com Content Network
[1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach ...
Initial attempts to measure the second order transverse Doppler effect in canal rays completely failed. For example, Stark's 1906 measurements showed systematic errors ten times the predicted effect. [5] The maximum speed achievable in early gas-discharge tubes was about 0.005 c, which implied a transverse Doppler shift of only about 1.25×10 ...
The Doppler shift is proportional to the electrophoretic mobility of a macromolecule. [10] From studies that have applied this method to poly (L-lysine) , ELS is believed to monitor fluctuation mobilities in the presence of solvents with varying salt concentrations. [ 11 ]
Within the field of all-optical techniques we can distinguish analogous techniques but using molecular tracers. In Doppler schemes, light quasi-elastically scatters off molecules and the velocity of the molecules convey a Doppler shift to the frequency of the scattered light. In molecular tagging techniques, like in PIV, velocimetry is based on ...
Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.
Three common methods are used to calculate the Doppler shift and thus the water velocity along the acoustic beams. The first method uses a monochromatic transmit pulse and is referred to as "incoherent" or "narrowband". The method is robust and provides good quality mean current profiles but has limited space-time resolution.
Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]
An example of a non-linear chirp pulse and the effects of Doppler are shown. The non-linear characteristic is chosen to achieve −50 dB sidelobes using Taylor weighting. The first figure shows the compressed pulse for a non-linear chirp, with bandwidth 10 MHz, pulse duration 10usec, so T×B = 100, and with no Doppler shift.