Search results
Results from the WOW.Com Content Network
[1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle sounding a horn approaches and recedes from an observer. Compared to the emitted frequency, the received frequency is higher during the approach ...
The frequency differences observed are due to different Doppler shift resulting from relative satellite motion and differences in the translation frequencies of the two satellite channels. Channel translation frequencies and downlink Doppler shift and delay can be calibrated out of the measurements by observing transmitters of known location ...
Doppler Effect: Change of wavelength and frequency caused by motion of the source. The formula for radar Doppler shift is the same as that for reflection of light by a moving mirror. [3] There is no need to invoke Albert Einstein's theory of special relativity, because all observations are made in the same frame of reference. [4]
Doppler positioning involves recording the Doppler shift of a radio signal of stable frequency emitted from a satellite as the satellite approaches and recedes from the observer. The observed frequency depends on the radial velocity of the satellite relative to the observer, which is constrained by orbital mechanics .
An example of a non-linear chirp pulse and the effects of Doppler are shown. The non-linear characteristic is chosen to achieve −50 dB sidelobes using Taylor weighting. The first figure shows the compressed pulse for a non-linear chirp, with bandwidth 10 MHz, pulse duration 10usec, so T×B = 100, and with no Doppler shift.
Doppler spectrum. Deliberately no units given (but could be dBu and MHz for example). This is an issue only with a particular type of system; the pulse-Doppler radar, which uses the Doppler effect to resolve velocity from the apparent change in frequency caused by targets that have net radial velocities compared to the radar device. Examination ...
Bistatic Doppler shift is a specific example of the Doppler effect that is observed by a radar or sonar system with a separated transmitter and receiver. The Doppler shift is due to the component of motion of the object in the direction of the transmitter, plus the component of motion of the object in the direction of the receiver.
Doppler shift with source moving at an arbitrary angle with respect to the line between source and receiver. The analysis used in section Relativistic longitudinal Doppler effect can be extended in a straightforward fashion to calculate the Doppler shift for the case where the inertial motions of the source and receiver are at any specified angle.