Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
scikit-learn (a free and open-source machine learning library for the Python programming language). Weka (a free and open-source data-mining suite, contains many decision tree algorithms), Notable commercial software: MATLAB, Microsoft SQL Server, and; RapidMiner, SAS Enterprise Miner, IBM SPSS Modeler,
Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.
It is mostly used for numerical analysis, computational science, and machine learning. [6] C# can be used to develop high level machine learning models using Microsoft’s .NET suite. ML.NET was developed to aid integration with existing .NET projects, simplifying the process for existing software using the .NET platform.
One application of machine learning is to perform regression from training data to build a correlation. In this example, deep learning generates a model from training data that is generated with the function (). An artificial neural network with three layers is used for this example. The first layer is linear, the second layer has a ...