enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    In 1930 O. Perron constructed an example of a second-order system, where the first approximation has negative Lyapunov exponents along a zero solution of the original system but, at the same time, this zero solution of the original nonlinear system is Lyapunov unstable. Furthermore, in a certain neighborhood of this zero solution almost all ...

  3. Oseledets theorem - Wikipedia

    en.wikipedia.org/wiki/Oseledets_theorem

    A prominent example of a cocycle is given by the matrix J t in the theory of Lyapunov exponents. In this special case, the dimension n of the matrices is the same as the dimension of the manifold X. For any cocycle C, the determinant det C(x, t) is a one-dimensional cocycle.

  4. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  5. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    This example shows a system where a Lyapunov function can be used to prove Lyapunov stability but cannot show asymptotic stability. Consider the following equation, based on the Van der Pol oscillator equation with the friction term changed:

  6. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  7. Hyperchaos - Wikipedia

    en.wikipedia.org/wiki/Hyperchaos

    Since on an attractor, the sum of Lyapunov exponents is non-positive, there must be at least one negative Lyapunov exponent. If the system has continuous time, then along the trajectory, the Lyapunov exponent is zero, and so the minimal number of dimensions in which continuous-time hyperchaos can occur is 4.

  8. Chaotic mixing - Wikipedia

    en.wikipedia.org/wiki/Chaotic_mixing

    The Lyapunov exponent of a flow is a unique quantity, that characterizes the asymptotic separation of fluid particles in a given flow. It is often used as a measure of the efficiency of mixing, since it measures how fast trajectories separate from each other because of chaotic advection. The Lyapunov exponent can be computed by different methods:

  9. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    The rate of separation depends on the orientation of the initial separation vector, so a whole spectrum of Lyapunov exponents can exist. The number of Lyapunov exponents is equal to the number of dimensions of the phase space, though it is common to just refer to the largest one. For example, the maximal Lyapunov exponent (MLE) is most often ...