Search results
Results from the WOW.Com Content Network
Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including ...
When underwater, the animal is essentially holding its breath and has to routinely return to the surface to breathe in new air. Therefore, all amniote animals, even those that spend more time in water than out, are susceptible to drowning if they cannot reach the surface to breath.
Gills or gill-like organs, located in different parts of the body, are found in various groups of aquatic animals, including mollusks, crustaceans, insects, fish, and amphibians. Semiterrestrial marine animals such as crabs and mudskippers have gill chambers in which they store water, enabling them to use the dissolved oxygen when they are on land.
Some protists accomplish this using contractile vacuoles, while freshwater fish excrete excess water via the kidney. [4] Although most aquatic organisms have a limited ability to regulate their osmotic balance and therefore can only live within a narrow range of salinity, diadromous fish have the ability to migrate between fresh and saline ...
Fish from multiple groups can live out of the water for extended time periods. Amphibious fish such as the mudskipper can live and move about on land for up to several days, or live in stagnant or otherwise oxygen depleted water. Many such fish can breathe air via a variety of mechanisms. The skin of anguillid eels may absorb oxygen directly.
Fish breathe dissolved oxygen, which is introduced to the water through wind and aquatic plant life. It's a balancing act. Temperatures that are too hot or too cold change the density of the water ...
The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ in bony fish (but not cartilaginous fish [1]) that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, which expends more energy. [2]
Native to south-east Asia, this fish has strong spines on its pectoral fins that enable its body to "walk" across dry land. It travels from waterhole to waterhole, where it seeks refuge and makes ...