enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    This can be achieved by defining tensors in terms of elements of tensor products of vector spaces, which in turn are defined through a universal property as explained here and here. A type (p, q) tensor is defined in this context as an element of the tensor product of vector spaces, [9] [10]

  3. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example:

  4. Antisymmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_tensor

    Totally antisymmetric tensors include: Trivially, all scalars and vectors (tensors of order 0 and 1) are totally antisymmetric (as well as being totally symmetric). The electromagnetic tensor, in electromagnetism. The Riemannian volume form on a pseudo-Riemannian manifold.

  5. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  6. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  7. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  8. Metric tensor - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor

    Another interpretation of the metric tensor, also considered by Gauss, is that it provides a way in which to compute the length of tangent vectors to the surface, as well as the angle between two tangent vectors. In contemporary terms, the metric tensor allows one to compute the dot product(non-euclidean geometry) of tangent vectors in a manner ...

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...