Search results
Results from the WOW.Com Content Network
Mantle plumes were first proposed by J. Tuzo Wilson in 1963 [3] [4] and further developed by W. Jason Morgan in 1971 and 1972. [4] A mantle plume is posited to exist where super-heated material forms at the core-mantle boundary and rises through the Earth's mantle.
Mantle plumes were first proposed by J. Tuzo Wilson in 1963 [4] [non-primary source needed] and further developed by W. Jason Morgan in 1971. A mantle plume is posited to exist where hot rock nucleates [clarification needed] at the core-mantle boundary and rises through the Earth's mantle becoming a diapir in the Earth's crust. [5]
The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere .
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
The formation and development of plumes in the early mantle contributed to triggering the lateral movement of crust across the Earth's surface. [18] The effect of upwelling mantle plumes on the lithosphere can be seen today through local depressions around hotspots such as Hawaii. The scale of this impact is much less than that exhibited in the ...
Some volcanoes occur in the interiors of plates, and these have been variously attributed to internal plate deformation [15] and to mantle plumes. Tectonic plates may include continental crust or oceanic crust, or both. For example, the African plate includes the continent and parts of the floor of the Atlantic and Indian Oceans.
The Iceland plume is a postulated upwelling of anomalously hot rock in the Earth's mantle beneath Iceland. Its origin is thought to lie deep in the mantle, perhaps at the boundary between the core and the mantle at about 2,880 km (1,790 mi) depth. Opinions differ as to whether seismic studies have imaged such a structure. [8]
The theory focuses on the movements of mantle plumes under tectonic plates, viewing them as the major driving force of movements of (parts of) the Earth's crust. In its more modern form, conceived in the 1970s, it tries to reconcile in one single geodynamic model the horizontalistic concept of plate tectonics, and the verticalistic concepts of ...