Search results
Results from the WOW.Com Content Network
In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [1] [2] [3] A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance).
Reverse bias is in the direction of little or no current flow; Negative charge carriers (electrons) can easily flow through the junction from n to p but not from p to n, and the reverse is true for positive charge carriers (Electron hole). When the p–n junction is forward-biased, charge carriers flow freely due to the reduction in energy ...
The fundamental characteristic of a diode is that current can flow only one way through it, which is defined as the forward direction. A diode bridge uses diodes as series components to allow current to pass in the forward direction during the positive part of the AC cycle and as shunt components to redirect current flowing in the reverse ...
Various semiconductor diodes. Left: A four-diode bridge rectifier. Next to it is a 1N4148 signal diode. On the far right is a Zener diode. In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [1] [2] [3]
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
The drift current, by contrast, is due to the motion of charge carriers due to the force exerted on them by an electric field. Diffusion current can be in the same or opposite direction of a drift current. The diffusion current and drift current together are described by the drift–diffusion equation. [1]
Current flow in one direction emits one color, and current in the opposite direction emits the other color. The other type consists of two dies with separate leads for both dies and another lead for common anode or cathode so that they can be controlled independently. The most common bi-color combination is red/traditional green. Others include ...