enow.com Web Search

  1. Ads

    related to: example of improper subset problem in real life algebra activities
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

Search results

  1. Results from the WOW.Com Content Network
  2. Fréchet filter - Wikipedia

    en.wikipedia.org/wiki/Fréchet_filter

    If the base set is finite, then = ℘ since every subset of , and in particular every complement, is then finite.This case is sometimes excluded by definition or else called the improper filter on . [2] Allowing to be finite creates a single exception to the Fréchet filter’s being free and non-principal since a filter on a finite set cannot be free and a non-principal filter cannot contain ...

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]

  4. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    These are two examples in which both the subset and the whole set are infinite, and the subset has the same cardinality (the concept that corresponds to size, that is, the number of elements, of a finite set) as the whole; such cases can run counter to one's initial intuition. The set of rational numbers is a proper subset of the set of real ...

  5. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    The set E of all finite definitions of real numbers is a subset of A. As A is countable, so is E. Let p be the nth decimal of the nth real number defined by the set E; we form a number N having zero for the integral part and p + 1 for the nth decimal if p is not equal either to 8 or 9, and unity if p is equal to 8 or 9.

  6. Sum-free set - Wikipedia

    en.wikipedia.org/wiki/Sum-free_set

    For example, the set of odd numbers is a sum-free subset of the integers, and the set {N + 1, ..., 2N } forms a large sum-free subset of the set {1, ..., 2N }. Fermat's Last Theorem is the statement that, for a given integer n > 2, the set of all nonzero n th powers of the integers is a sum-free set.

  7. Null set - Wikipedia

    en.wikipedia.org/wiki/Null_set

    A measure in which all subsets of null sets are measurable is complete. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it is defined as the completion of a non-complete Borel measure.

  1. Ads

    related to: example of improper subset problem in real life algebra activities