Search results
Results from the WOW.Com Content Network
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Snell's window (also called Snell's circle [1] or optical man-hole [2]) is a phenomenon by which an underwater viewer sees everything above the surface through a cone of light of width of about 96 degrees. [3] This phenomenon is caused by refraction of light entering water, and is governed by Snell's Law. [4]
nl grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law. Public domain Public domain false false Original upload log
This work has been released into the public domain by its author, Sawims.This applies worldwide. In some countries this may not be legally possible; if so: Sawims grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
This equation is known as Brewster's law, and the angle defined by it is Brewster's angle. The physical mechanism for this can be qualitatively understood from the manner in which electric dipoles in the media respond to p-polarized light. One can imagine that light incident on the surface is absorbed, and then re-radiated by oscillating ...
Snell's Law can be used to predict the deflection of light rays as they pass through "linear media" as long as the indexes of refraction and the geometry of the media are known. For example, the propagation of light through a prism results in the light ray being deflected depending on the shape and orientation of the prism.