Search results
Results from the WOW.Com Content Network
The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [ 1 ] [ 2 ] [ 3 ] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most n log 2 3 ...
A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the t
Magma contains asymptotically fast algorithms for all fundamental integer and polynomial operations, such as the Schönhage–Strassen algorithm for fast multiplication of integers and polynomials. Integer factorization algorithms include the Elliptic Curve Method , the Quadratic sieve and the Number field sieve .
Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held.
The algorithm uses the Montgomery forms of a and b to efficiently compute the Montgomery form of ab mod N. The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product ab using division by N and keeping only the remainder. This division requires quotient digit estimation and ...
The Schönhage–Strassen algorithm is an asymptotically fast multiplication algorithm for large integers, published by Arnold Schönhage and Volker Strassen in 1971. [1] It works by recursively applying fast Fourier transform (FFT) over the integers modulo 2 n + 1 {\displaystyle 2^{n}+1} .
The divide-and-conquer paradigm often helps in the discovery of efficient algorithms. It was the key, for example, to Karatsuba's fast multiplication method, the quicksort and mergesort algorithms, the Strassen algorithm for matrix multiplication, and fast Fourier transforms.
For multiplication, the most straightforward algorithms used for multiplying numbers by hand (as taught in primary school) require (N 2) operations, but multiplication algorithms that achieve O(N log(N) log(log(N))) complexity have been devised, such as the Schönhage–Strassen algorithm, based on fast Fourier transforms, and there are also ...