Search results
Results from the WOW.Com Content Network
In the statistics literature, naive Bayes models are known under a variety of names, including simple Bayes and independence Bayes. [3] All these names reference the use of Bayes' theorem in the classifier's decision rule, but naive Bayes is not (necessarily) a Bayesian method.
Although Bayes' theorem is a fundamental result of probability theory, it has a specific interpretation in Bayesian statistics. In the above equation, A {\displaystyle A} usually represents a proposition (such as the statement that a coin lands on heads fifty percent of the time) and B {\displaystyle B} represents the evidence, or new data that ...
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Bayes' theorem is named after the Reverend Thomas Bayes (/ b eɪ z /), also a statistician and philosopher. Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter. His work was published in 1763 as An Essay Towards Solving a Problem in the Doctrine of Chances.
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
Naive Bayes classifier – Probabilistic classification algorithm Perceptron – Algorithm for supervised learning of binary classifiers Quadratic classifier – used in machine learning to separate measurements of two or more classes of objects Pages displaying wikidata descriptions as a fallback
Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics , probabilistic classification in general is called discrete choice . Some classification models, such as naive Bayes , logistic regression and multilayer perceptrons (when trained under an appropriate loss function ) are naturally ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.