Search results
Results from the WOW.Com Content Network
In a programming language, an evaluation strategy is a set of rules for evaluating expressions. [1] The term is often used to refer to the more specific notion of a parameter-passing strategy [2] that defines the kind of value that is passed to the function for each parameter (the binding strategy) [3] and whether to evaluate the parameters of a function call, and if so in what order (the ...
In simple cases this is identical to usual function calls; for example, addition x + y is generally equivalent to a function call add(x, y) and less-than comparison x < y to lt(x, y), meaning that the arguments are evaluated in their usual way, then some function is evaluated and the result is returned as a value. However, the semantics can be ...
Calling f with a regular function argument first applies this function to the value 2, then returns 3. However, when f is passed to call/cc (as in the last line of the example), applying the parameter (the continuation) to 2 forces execution of the program to jump to the point where call/cc was called, and causes call/cc to return the value 2.
For example, in the expression (f(x)-1)/(f(x)+1), the function f cannot be called only once with its value used two times since the two calls may return different results. Moreover, in the few languages which define the order of evaluation of the division operator's operands, the value of x must be fetched again before the second call, since ...
In programming language theory, lazy evaluation, or call-by-need, [1] is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations (by the use of sharing). [2] [3] The benefits of lazy evaluation include:
In computer science, a calling convention is an implementation-level (low-level) scheme for how subroutines or functions receive parameters from their caller and how they return a result. [1] When some code calls a function, design choices have been taken for where and how parameters are passed to that function, and where and how results are ...
The specification for pass-by-reference or pass-by-value would be made in the function declaration and/or definition. Parameters appear in procedure definitions; arguments appear in procedure calls. In the function definition f(x) = x*x the variable x is a parameter; in the function call f(2) the value 2 is the argument of the function. Loosely ...
This example specifies a valid D function called "factorial" which would typically be evaluated at run time. The use of enum tells the compiler that the initializer for the variables must be computed at compile time. Note that the arguments to the function must be able to be resolved at compile time as well. [4]