Search results
Results from the WOW.Com Content Network
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
A literal is either a variable (in which case it is called a positive literal) or the negation of a variable (called a negative literal). A clause is a disjunction of literals (or a single literal). A clause is called a Horn clause if it contains at most one positive literal.
An anonymous function is a literal for the function type. In contrast to literals, variables or constants are symbols that can take on one of a class of fixed values, the constant being constrained not to change. Literals are often used to initialize variables; for example, in the following, 1 is an integer literal and the three letter string ...
one of the Gegenbauer functions in analytic number theory (may be replaced by the capital form of the Latin letter P). represents: one of the Gegenbauer functions in analytic number theory. the Dickman–de Bruijn function; the radius in a polar, cylindrical, or spherical coordinate system; the correlation coefficient in statistics
In the context of functions, the term variable refers commonly to the arguments of the functions. This is typically the case in sentences like "function of a real variable", "x is the variable of the function f: x ↦ f(x)", "f is a function of the variable x" (meaning that the argument of the function is referred to by the variable x).
Two such formal polynomials are considered equal whenever their coefficients are the same. Sometimes these two concepts of equality disagree. Some authors reserve the word variable to mean an unknown or changing quantity, and strictly distinguish the concepts of variable and indeterminate. Other authors indiscriminately use the name variable ...
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.