Search results
Results from the WOW.Com Content Network
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative . Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
The standard liter per minute (SLM or SLPM) is a unit of (molar or) mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). [1]
Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The mass flow rate is the mass of the fluid traveling past a fixed point per unit time. The mass flow meter does not measure the volume per unit time (e.g. cubic meters per second) passing through the device; it measures the mass per unit time (e.g. kilograms per second) flowing through the device. Volumetric flow rate is the mass flow rate ...
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.