Search results
Results from the WOW.Com Content Network
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
d is the distance between the two points along a great circle of the sphere (see spherical distance), r is the radius of the sphere. The haversine formula allows the haversine of θ to be computed directly from the latitude (represented by φ) and longitude (represented by λ) of the two points:
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Informally, specifying a geographic location usually means giving the location's latitude and longitude.The numerical values for latitude and longitude can occur in a number of different units or formats: [2]
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
The length of a degree of longitude (east–west distance) depends only on the radius of a circle of latitude. For a sphere of radius a that radius at latitude φ is a cos φ , and the length of a one-degree (or π / 180 radian ) arc along a circle of latitude is
Since a geohash (in this implementation) is based on coordinates of longitude and latitude the distance between two geohashes reflects the distance in latitude/longitude coordinates between two points, which does not translate to actual distance, see Haversine formula. Example of non-linearity for latitude-longitude system:
The rectifying latitude, μ, is the meridian distance scaled so that its value at the poles is equal to 90 degrees or π / 2 radians: = where the meridian distance from the equator to a latitude ϕ is (see Meridian arc)