Search results
Results from the WOW.Com Content Network
Common examples of array slicing are extracting a substring from a string of characters, the "ell" in "hello", extracting a row or column from a two-dimensional array, or extracting a vector from a matrix. Depending on the programming language, an array slice can be made out of non-consecutive elements.
(search substring string) Common Lisp: returns NIL (string-index substring string) ISLISP: returns nil: List.findIndex (List.isPrefixOf substring) (List.tails string) Haskell (returns only index) returns Nothing Str.search_forward (Str.regexp_string substring) string 0: OCaml: raises Not_found
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
A string s is said to be a substring or factor of t if there exist (possibly empty) strings u and v such that t = usv. The relation "is a substring of" defines a partial order on Σ *, the least element of which is the empty string.
Matches the ending position of the string or the position just before a string-ending newline. In line-based tools, it matches the ending position of any line. ( ) Defines a marked subexpression, also called a capturing group, which is essential for extracting the desired part of the text (See also the next entry, \n). BRE mode requires \( \). \n
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...