enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS is open-source software to solve linear programming (LP), mixed-integer programming (MIP), and convex quadratic programming (QP) models. [1] Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, JavaScript, Fortran, and C#. It has no external dependencies.

  3. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    As Young showed in 1995 [3] both the random part of this algorithm and the need to construct an explicit solution to the linear programming relaxation may be eliminated using the method of conditional probabilities, leading to a deterministic greedy algorithm for set cover, known already to Lovász, that repeatedly selects the set that covers ...

  4. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    API to MATLAB and Python. Solve example Linear Programming (LP) problems through MATLAB, Python, or a web-interface. CPLEX: Popular solver with an API for several programming languages, and also has a modelling language and works with AIMMS, AMPL, GAMS, MPL, OpenOpt, OPL Development Studio, and TOMLAB. Free for academic use. Excel Solver Function

  5. Revised simplex method - Wikipedia

    en.wikipedia.org/wiki/Revised_simplex_method

    For the rest of the discussion, it is assumed that a linear programming problem has been converted into the following standard form: =, where A ∈ ℝ m×n.Without loss of generality, it is assumed that the constraint matrix A has full row rank and that the problem is feasible, i.e., there is at least one x ≥ 0 such that Ax = b.

  6. Cutting stock problem - Wikipedia

    en.wikipedia.org/wiki/Cutting_stock_problem

    This method solves the cutting-stock problem by starting with just a few patterns. It generates additional patterns when they are needed. For the one-dimensional case, the new patterns are introduced by solving an auxiliary optimization problem called the knapsack problem, using dual variable information from the linear program.

  7. Active-set method - Wikipedia

    en.wikipedia.org/wiki/Active-set_method

    For example, in solving the linear programming problem, the active set gives the hyperplanes that intersect at the solution point. In quadratic programming , as the solution is not necessarily on one of the edges of the bounding polygon, an estimation of the active set gives us a subset of inequalities to watch while searching the solution ...

  8. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  9. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.