Search results
Results from the WOW.Com Content Network
See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results. [ 5 ] Lubotzky , Phillips and Sarnak [ 2 ] and independently Margulis [ 6 ] showed how to construct an infinite family of ( p + 1 ) {\displaystyle (p+1)} -regular Ramanujan graphs, whenever p {\displaystyle p} is a prime number and p ...
Satake (1966) reformulated the Ramanujan–Petersson conjecture in terms of automorphic representations for GL(2) as saying that the local components of automorphic representations lie in the principal series, and suggested this condition as a generalization of the Ramanujan–Petersson conjecture to automorphic forms on other groups. Another ...
Lafforgue's theorem implies the Ramanujan–Petersson conjecture that if an automorphic form for GL n (F) has central character of finite order, then the corresponding Hecke eigenvalues at every unramified place have absolute value 1.
Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.
Download as PDF; Printable version; In other projects ... (1917) and the third one, called the Ramanujan conjecture, ... Ramanujan's L-function is defined by = ...
This page was last edited on 5 June 2008, at 15:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.