Search results
Results from the WOW.Com Content Network
In scientific visualization, line integral convolution (LIC) is a method to visualize a vector field (such as fluid motion) at high spatial resolutions. [1] The LIC technique was first proposed by Brian Cabral and Leith Casey Leedom in 1993.
Instead, decomposing the longer sequence into blocks and convolving each block allows for faster algorithms such as the overlap–save method and overlap–add method. [20] A hybrid convolution method that combines block and FIR algorithms allows for a zero input-output latency that is useful for real-time convolution computations. [21]
Visual comparison of convolution, cross-correlation and autocorrelation.For the operations involving function f, and assuming the height of f is 1.0, the value of the result at 5 different points is indicated by the shaded area below each point.
Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...
The two methods are also compared in Figure 3, created by Matlab simulation. The contours are lines of constant ratio of the times it takes to perform both methods. When the overlap-add method is faster, the ratio exceeds 1, and ratios as high as 3 are seen. Fig 3: Gain of the overlap-add method compared to a single, large circular convolution.
In structure mining, a graph kernel is a kernel function that computes an inner product on graphs. [1] Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs.
The overlap-add method involves a linear convolution of discrete-time signals, whereas the overlap-save method involves the principle of circular convolution. In addition, the overlap and save method only uses a one-time zero padding of the impulse response, while the overlap-add method involves a zero-padding for every convolution on each ...
Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix. Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity. For symmetric Toeplitz matrices, there is the decomposition