Search results
Results from the WOW.Com Content Network
1.0 long cwt (110 lb; 51 kg) short hundredweight: short cwt short cwt 1.0 short cwt (100 lb; 45 kg) long quarter: long qtr long qtr 1.0 long qtr (28 lb; 13 kg) short quarter: short qtr short qtr 1.0 short qtr (25 lb; 11 kg) stone: st st 14 lb used mostly in the British Commonwealth except Canada 1.0 st (14 lb; 6.4 kg) st kg. st kg lb; st lb
Elemental mEq to compound weight Potassium (reference) K 39.098 g/mol 1 (K +) 20 mEq potassium 20*39.098/1=782 mg Potassium citrate monohydrate C 6 H 7 K 3 O 8: 324.41 g/mol 3 (K +) Liquid potassium citrate/gluconate therapy for adults and teenagers taken two to four times a day [3] 20 mEq potassium 20*324/3=2160 mg Potassium gluconate ...
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
= 42.637 682 78 kg: barge: ≡ 22 + 1 ⁄ 2 short ton = 20 411.656 65 kg: carat: kt ≡ 3 + 1 ⁄ 6 gr = 205.196 548 3 mg carat (metric) ct ≡ 200 mg = 200 mg clove: ≡ 8 lb av = 3.628 738 96 kg: crith: ≡ mass of 1 L of hydrogen gas at STP: ≈ 89.9349 mg dalton: Da 1/12 the mass of an unbound neutral atom of carbon-12 in its nuclear and ...
The gram (10 −3 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg.
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.