Search results
Results from the WOW.Com Content Network
The αC-Helix region is highly conserved across many of the mammalian kinome (family of kinases). Its main responsibility is to maintain allosteric control of the kinase active site. This control manifests in CDK-cyclin complexes by specifically preventing CDK activity until its binds to its partner regulator (i.e. cyclin or other partner protein).
Without cyclin, CDK is less active than in the cyclin-CDK heterodimer complex. [ 5 ] [ 6 ] CDKs phosphorylate proteins on serine (S) or threonine (T) residues. The specificity of CDKs for their substrates is defined by the S/T-P-X-K/R sequence, where S/T is the phosphorylation site, P is proline, X is any amino acid, and the sequence ends with ...
CDK family members are highly similar to the gene products of S. cerevisiae cdc28, and S. pombe cdc2, and known as important cell cycle regulators. This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C ...
The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly similar to the gene products of Saccharomyces cerevisiae cdc28, and Schizosaccharomyces pombe cdc2, and are known to be important regulators of cell cycle progression.
Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that functions as a serine/threonine protein kinase, and is a key player in cell cycle regulation. [5]
The CDK4 gene is located on chromosome 12 in humans. [7] The gene is composed of 4,583 base pairs which together code for the 303 amino acid protein with a molecular mass of 33,730 Da. [7] [8] All CDK proteins, including CDK4, have two lobes: the smaller N-terminal lobe (which contains an inhibitory G-loop), and the C terminal lobe (which contains an activation domain and a T-loop).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
CDK-activating kinase (CAK) activates the cyclin-CDK complex by phosphorylating threonine residue 160 in the CDK activation loop. CAK itself is a member of the Cdk family and functions as a positive regulator of Cdk1 , Cdk2 , Cdk4 , and Cdk6 .