enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter if often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.

  3. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form.

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Illustration of the vector formulation. The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line.

  5. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  6. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    The second fundamental form of a general parametric surface S is defined as follows. Let r = r(u 1,u 2) be a regular parametrization of a surface in R 3, where r is a smooth vector-valued function of two variables. It is common to denote the partial derivatives of r with respect to u α by r α, α = 1, 2.

  7. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as d s 2 = E d u 2 + 2 F d u d v + G d v 2 ...

  8. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  9. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    Suppose that F is a static vector field, that is, a vector-valued function with Cartesian coordinates (F 1,F 2,...,F n), and that x(t) is a parametric curve with Cartesian coordinates (x 1 (t),x 2 (t),...,x n (t)). Then x(t) is an integral curve of F if it is a solution of the autonomous system of ordinary differential equations,