Search results
Results from the WOW.Com Content Network
Complex traits are phenotypes that are controlled by two or more genes and do not follow Mendel's Law of Dominance. They may have a range of expression which is typically continuous. Both environmental and genetic factors often impact the variation in expression. Human height is a continuous trait meaning that there is a wide range of heights ...
Under the Polygenic Model, for traits, like height, to be continuous in a population there must be many genes that code for the trait. Otherwise, the expression of the trait is limited by the number of possible combinations of alleles. The many genes which code for the continuous trait are also further modified by environmental conditions. [3]
The effects of truncation selection for a continuous trait can be modeled by the standard breeder's equation by using heritability and truncated normal distributions. On a binary trait, it can be modeled easily using the liability threshold model. It is considered an easy and efficient method of breeding. [1]
They can show either smooth, continuous gradation in a character, or more abrupt changes in the trait from one geographic region to the next. [2] A cline is a spatial gradient in a single specific trait, rather than in a collection of traits; [3] a single population can therefore have as many clines as it has traits, at least in principle. [4]
Quantitative genetics is the study of quantitative traits, which are phenotypes that vary continuously—such as height or mass—as opposed to phenotypes and gene-products that are discretely identifiable—such as eye-colour, or the presence of a particular biochemical.
The more advantageous the trait is the more common it will become in the population. Disruptive selection is a specific type of natural selection that actively selects against the intermediate in a population, favoring both extremes of the spectrum.
Developmental bias for continuous characters. If the main axis of variation (red arrows) is orthogonal to the direction of selection (dashed line), trait covariation will constraint adaptive evolution. Conversely, if the main axis of variation is aligned with the direction of selection, trait covariation will facilitate adaptive evolution.
A GWAS of a continuous trait essentially consists of repeating this analysis at each SNP. The most common approach of GWA studies is the case-control setup, which compares two large groups of individuals, one healthy control group and one case group affected by a disease.