Search results
Results from the WOW.Com Content Network
The linear programming problem was first shown to be solvable in polynomial time by Leonid Khachiyan in 1979, [9] but a larger theoretical and practical breakthrough in the field came in 1984 when Narendra Karmarkar introduced a new interior-point method for solving linear-programming problems.
The discovery of linear time algorithms for linear programming and the observation that the same algorithms could in many cases be used to solve geometric optimization problems that were not linear programs goes back at least to Megiddo (1983, 1984), who gave a linear expected time algorithm for both three-variable linear programs and the ...
The configuration linear program (configuration-LP) is a linear programming technique used for solving combinatorial optimization problems. It was introduced in the context of the cutting stock problem. [1] [2] Later, it has been applied to the bin packing [3] [4] and job scheduling problems.
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
Consider the set cover problem, the linear programming relaxation of which was first considered by Lovász in 1975. [1] In this problem, one is given as input a family of sets F = {S 0, S 1, ...}; the task is to find a subfamily, with as few sets as possible, having the same union as F.
Dantzig–Wolfe decomposition relies on delayed column generation for improving the tractability of large-scale linear programs. For most linear programs solved via the revised simplex algorithm, at each step, most columns (variables) are not in the basis. In such a scheme, a master problem containing at least the currently active columns (the ...
Linear programming relaxation; Linear-fractional programming; LP-type problem; M. Minimum relevant variables in linear system; MPS (format)
In mathematical optimization theory, the linear complementarity problem (LCP) arises frequently in computational mechanics and encompasses the well-known quadratic programming as a special case. It was proposed by Cottle and Dantzig in 1968.