enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  3. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature.It was originally presented in an 1882 paper entitled "Die Thermodynamik chemischer Vorgänge" by Hermann von Helmholtz.

  4. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy. The Gibbs free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy, p is the pressure, and V is the ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Helmholtz free energy: A, F = J ML 2 T −2: Landau potential, Landau free energy, Grand potential: Ω, Φ G = J ML 2 T −2: Massieu potential, Helmholtz free entropy: Φ = / J⋅K −1: ML 2 T −2 Θ −1: Planck potential, Gibbs free entropy: Ξ

  6. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  7. Grand potential - Wikipedia

    en.wikipedia.org/wiki/Grand_potential

    The grand potential or Landau potential or Landau free energy is a quantity used in statistical mechanics, especially for irreversible processes in open systems. The grand potential is the characteristic state function for the grand canonical ensemble .

  8. Critical radius - Wikipedia

    en.wikipedia.org/wiki/Critical_radius

    The critical radius of a system can be determined from its Gibbs free energy. [1]= + It has two components, the volume energy and the surface energy .The first one describes how probable it is to have a phase change and the second one is the amount of energy needed to create an interface.

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Differentiating the Euler equation for the internal energy and combining with the fundamental equation for internal energy, it follows that: = + which is known as the Gibbs-Duhem relationship. The Gibbs-Duhem is a relationship among the intensive parameters of the system.