Search results
Results from the WOW.Com Content Network
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data.
Advanced Placement (AP) Statistics (also known as AP Stats) is a college-level high school statistics course offered in the United States through the College Board's Advanced Placement program. This course is equivalent to a one semester, non- calculus -based introductory college statistics course and is normally offered to sophomores , juniors ...
In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space .
An example is a time-series of plant species colonising a new habitat; early successional species are replaced by mid-successional species, then by late successional ones (see example below). When such data are analysed by a standard ordination such as a correspondence analysis:
Time series: random data plus trend, with best-fit line and different applied filters. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.
The above definition is common in many applications today, and prominent in lattice and domain theory. However the original notion in Galois theory is slightly different. In this alternative definition, a Galois connection is a pair of antitone, i.e. order-reversing, functions F : A → B and G : B → A between two posets A and B, such that
Note the asymmetry in this latter definition; which talks about a correspondence from X to Y rather than a correspondence between X and Y. The typical example of the latter kind of correspondence is the graph of a function f:X→Y. Correspondences also play an important role in the construction of motives (cf. presheaf with transfers). [2]
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.