enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Another possible reason for the success of batch normalization is that it decouples the length and direction of the weight vectors and thus facilitates better training. By interpreting batch norm as a reparametrization of weight space, it can be shown that the length and the direction of the weights are separated and can thus be trained separately.

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Weight normalization (WeightNorm) [18] is a technique inspired by BatchNorm that normalizes weight matrices in a neural network, rather than its activations. One example is spectral normalization , which divides weight matrices by their spectral norm .

  4. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    This in particular includes all feedforward or recurrent neural networks composed of multilayer perceptron, recurrent neural networks (e.g., LSTMs, GRUs), (nD or graph) convolution, pooling, skip connection, attention, batch normalization, and/or layer normalization.

  5. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    This connection is referred to as a "residual connection" in later work. The function () is often represented by matrix multiplication interlaced with activation functions and normalization operations (e.g., batch normalization or layer normalization). As a whole, one of these subnetworks is referred to as a "residual block". [1]

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight. [1] The problem is that as the network depth or sequence length increases, the gradient magnitude typically is expected to decrease (or grow uncontrollably ...

  8. “Meet the Parents ”to expand the circle of trust with a ...

    www.aol.com/meet-parents-expand-circle-trust...

    The woes of Greg Focker aren't over just yet. Ben Stiller, Robert De Niro, Teri Polo, and Blythe Danner are in early talks to return for a fourth Meet the Parents movie, nearly 15 years after they ...

  9. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception v2 was released in 2015, in a paper that is more famous for proposing batch normalization. [7] [8] It had 13.6 million parameters.It improves on Inception v1 by adding batch normalization, and removing dropout and local response normalization which they found became unnecessary when batch normalization is used.