Search results
Results from the WOW.Com Content Network
Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.
In contrast to photoautotrophs, photoheterotrophs are organisms that depend solely on light for their energy and principally on organic compounds for their carbon. Photoheterotrophs produce ATP through photophosphorylation but use environmentally obtained organic compounds to build structures and other bio-molecules.
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Organisms that grow by fixing carbon, such as most plants and algae, are called autotrophs. These include photoautotrophs (which use sunlight) and lithoautotrophs (which use inorganic oxidation ). Heterotrophs , such as animals and fungi , are not capable of carbon fixation but are able to grow by consuming the carbon fixed by autotrophs or ...
Cyanobacteria remained the principal primary producers throughout the latter half of the Archean eon and most of the Proterozoic eon, in part because the redox structure of the oceans favored photoautotrophs capable of nitrogen fixation. However, their population is argued to have varied considerably across this eon.
Purple non-sulfur bacteria, green non-sulfur bacteria, and heliobacteria are examples of bacteria that carry out this scheme of photoheterotrophy. Other organisms, including halobacteria and flavobacteria [ 8 ] and vibrios [ 9 ] have purple-rhodopsin-based proton pumps that supplement their energy supply.
Autotrophs are vital to all ecosystems because all organisms need organic molecules, and only autotrophs can produce them from inorganic compounds. [1] Autotrophs are classified as either photoautotrophs (which get energy from the sun, like plants) or chemoautotrophs (which get energy from chemical bonds, like certain bacteria).