Search results
Results from the WOW.Com Content Network
The Hum is a name often given to widespread reports of a persistent and invasive low-frequency humming, rumbling, or droning noise audible to many but not all people. Hums have been reported all over the world, including the United States, the United Kingdom, Australia and Canada.
The tympanic reflex helps prevent damage to the inner ear by muffling the transmission of low frequency vibrations from the tympanic membrane to the oval window. The reflex has a response time of 40 milliseconds, not fast enough to protect the ear from sudden loud noises such as an explosion or gunshot.
Although the ear is the primary organ for sensing low sound, at higher intensities it is possible to feel infrasound vibrations in various parts of the body. The study of such sound waves is sometimes referred to as infrasonics , covering sounds beneath 20 Hz down to 0.1 Hz (and rarely to 0.001 Hz).
HRTF filtering effect. A head-related transfer function (HRTF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others.
Animals with a greater ear distance can localize lower frequencies than humans can. For animals with a smaller ear distance the lowest localizable frequency is higher than for humans. If the ears are located at the side of the head, interaural level differences appear for higher frequencies and can be evaluated for localization tasks.
In this system all the low-frequency rumble was in the left channel and all the high-frequency distortion was in the right channel. Over a quarter of a century later, it was decided to tilt the recording head 45 degrees off to the right side so that both the low-frequency rumble and high-frequency distortion were shared equally by both channels ...
Cochlear hydrops preferentially affects the apex of the cochlea where low-frequency sounds are interpreted. Due to the fluid imbalance in this area, parts of the cochlea are stretched or under more tension than usual, which can lead to distortions of sound, changes in pitch perception, or hearing loss, all usually in the low frequencies.
Middle ear causes of pulsatile tinnitus include patulous eustachian tube, otosclerosis, or middle ear myoclonus (e.g., stapedial or tensor tympani myoclonus). The most common inner ear cause of pulsatile tinnitus is superior semicircular canal dehiscence. [58] Pulsatile tinnitus may also indicate idiopathic intracranial hypertension. [59]