Search results
Results from the WOW.Com Content Network
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Differentiable programming has found use in a wide variety of areas, particularly scientific computing and machine learning. [5] One of the early proposals to adopt such a framework in a systematic fashion to improve upon learning algorithms was made by the Advanced Concepts Team at the European Space Agency in early 2016. [6]
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
The step size is denoted by (sometimes called the learning rate in machine learning) and here ":=" denotes the update of a variable in the algorithm. In many cases, the summand functions have a simple form that enables inexpensive evaluations of the sum-function and the sum gradient.
scikit-learn, an open source machine learning library for Python; Orange, a free data mining software suite, module Orange.ensemble; Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]
Every learning algorithm tends to suit some problem types better than others, and typically has many different parameters and configurations to adjust before it achieves optimal performance on a dataset. AdaBoost (with decision trees as the weak learners) is often referred to as the best out-of-the-box classifier.