enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  4. Dalton (unit) - Wikipedia

    en.wikipedia.org/wiki/Dalton_(unit)

    That is, the molar mass of a chemical compound expressed in g/mol or kg/kmol is numerically equal to its average molecular mass expressed in Da. For example, the average mass of one molecule of water is about 18.0153 Da, and the mass of one mole of water is about 18.0153 g.

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I = / W⋅m −2: MT −3: Thermal/heat flux density (vector analogue of thermal intensity above) q

  6. Molecular mass - Wikipedia

    en.wikipedia.org/wiki/Molecular_mass

    The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes ), and the molecular mass the mass of one specific particle or molecule.

  7. Sherwood number - Wikipedia

    en.wikipedia.org/wiki/Sherwood_number

    The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate ( convection + diffusion) to the rate of diffusive mass transport, [ 1 ] and is named in honor of Thomas Kilgore Sherwood .

  8. Equimolar counterdiffusion - Wikipedia

    en.wikipedia.org/wiki/Equimolar_counterdiffusion

    The diffusion in the bulk fluide compensate the utilisation of B at the surface of the catalyst. k g is the mass transfer coefficient. Ṅ diff,B =k g (y B,1-y B,2) Although the mixture is stationary due to the molar flow rate and velocity being zero, the net mass flow rate of the mixture is not equal to zero unless the molar mass of A is equal ...

  9. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.