Search results
Results from the WOW.Com Content Network
John Dalton FRS (/ ˈ d ɔː l t ən /; 5 or 6 September 1766 – 27 July 1844) was an English chemist, physicist and meteorologist. [1] He introduced the atomic theory into chemistry.
Modern atomic theory is not based on these old concepts. [2] [3] In the early 19th century, the scientist John Dalton noticed that chemical substances seemed to combine with each other by discrete and consistent units of weight, and he decided to use the word atom to refer to these units. [4]
In the vortex theory of the atom, a chemical atom is modelled by such a vortex in the aether. Knots can be tied in the core of such a vortex, leading to the hypothesis that each chemical element corresponds to a different kind of knot. The simple toroidal vortex, represented by the circular "unknot" 0 1, was thought to represent hydrogen.
In 1804, Dalton explained his atomic theory to his friend and fellow chemist Thomas Thomson, who published an explanation of Dalton's theory in his book A System of Chemistry in 1807. According to Thomson, Dalton's idea first occurred to him when experimenting with "olefiant gas" ( ethylene ) and "carburetted hydrogen gas" ( methane ).
John Dalton's union of atoms combined in ratios (1808) Similar to these views, in 1803 John Dalton took the atomic weight of hydrogen, the lightest element, as unity, and determined, for example, that the ratio for nitrous anhydride was 2 to 3 which gives the formula N 2 O 3. Dalton incorrectly imagined that atoms "hooked" together to form ...
The law of definite proportions contributed to the atomic theory that John Dalton promoted beginning in 1805, which explained matter as consisting of discrete atoms, that there was one type of atom for each element, and that the compounds were made of combinations of different types of atoms in fixed proportions. [5]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
John Dalton's alternative formulae for water and ammonia. And then he proceeded to give a list of relative weights in the compositions of several common compounds, summarizing: [73] 1st. That water is a binary compound of hydrogen and oxygen, and the relative weights of the two elementary atoms are as 1:7, nearly; 2nd.