enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the ... data compression, computer graphics and machine learning. Cluster analysis refers to a ... hierarchical clustering can be ...

  4. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Cluster analysis is used in unsupervised learning to group, or segment, datasets with shared attributes in order to extrapolate algorithmic relationships. [11] Cluster analysis is a branch of machine learning that groups the data that has not been labelled, classified or categorized. Instead of responding to feedback, cluster analysis ...

  5. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [ 1 ] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters ...

  6. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    The basic idea has been extended to hierarchical clustering by the OPTICS algorithm. DBSCAN is also used as part of subspace clustering algorithms like PreDeCon and SUBCLU . HDBSCAN* [ 6 ] [ 7 ] is a hierarchical version of DBSCAN which is also faster than OPTICS, from which a flat partition consisting of the most prominent clusters can be ...

  7. Conceptual clustering - Wikipedia

    en.wikipedia.org/wiki/Conceptual_clustering

    Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 (Fisher 1987, Michalski 1980) and developed mainly during the 1980s. It is distinguished from ordinary data clustering by generating a concept description for each generated class.

  8. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  9. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Unlike partitioning and hierarchical methods, density-based clustering algorithms are able to find clusters of any arbitrary shape, not only spheres. The density-based clustering algorithm uses autonomous machine learning that identifies patterns regarding geographical location and distance to a particular number of neighbors.